CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase

نویسندگان

  • Amir Kumar Singh
  • Uttam Pati
چکیده

In patient with Alzheimer's disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin-proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIP(U) (box) domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53's DNA-binding conformation and its binding upon 5' UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP-BACE1-p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of the presenilin-1 gene controls gamma-secretase activity.

Inhibition of basal JNK activity by JNK inhibitor SP600125 or JNK1siRNA repressed presenilin-1 (PS1) expression in SK-N-SH cells by augmenting the level of p53, a repressor of the PS1 gene (1). We now showed that repression of PS1 transcription by JNK inhibitor SP600125 inhibited gamma-secretase mediated processing of amyloid precursor protein (APP) resulting in the accumulation of C99 fragment...

متن کامل

Cystatin C Shifts APP Processing from Amyloid-β Production towards Non-Amyloidgenic Pathway in Brain Endothelial Cells

Amyloid-β (Aβ), the major component of neuritic plaques in Alzheimer's disease (AD), is derived from sequential proteolytic cleavage of amyloid protein precursor (APP) by secretases. In this study, we found that cystatin C (CysC), a natural cysteine protease inhibitor, is able to reduce Aβ40 secretion in human brain microvascular endothelial cells (HBMEC). The CysC-induced Aβ40 reduction was ca...

متن کامل

p53-Dependent transcriptional control of cellular prion by presenilins.

The presenilin-dependent gamma-secretase processing of the beta-amyloid precursor protein (betaAPP) conditions the length of the amyloid beta peptides (Abeta) that accumulate in the senile plaques of Alzheimer's disease-affected brains. This, together with an additional presenilin-mediated epsilon-secretase cleavage, generates intracellular betaAPP-derived fragments named amyloid intracellular ...

متن کامل

Phosphorylation of Nicastrin by SGK1 Leads to Its Degradation through Lysosomal and Proteasomal Pathways

The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and glucocorticoid-induced protein kinase 1 (SGK1) marke...

متن کامل

Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015